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ABSTRACT
Purpose To characterize the time-course of sleep in insomnia
patients as well as placebo and concentration-effect relation-
ships of two hypnotic compounds, PD 0200390 and zolpidem,
using an accelerated model-building strategy based on mixed-
effects Markov models.
Methods Data were obtained in a phase II study with the
drugs. Sleep stages were recorded during eight hours of sleep
for two nights per treatment for the five treatments. First-order
Markov models were developed for one transition at a time in
a sequential manner; first a baseline model, followed by
placebo and lastly the drug models. To accelerate the process,
predefined models were selected based on a priori knowledge
of sleep, including inter-subject and inter-occasion variability.
Results Baseline sleep was described using piece-wise linear
models, depending on time of night and duration of sleep
stage. Placebo affected light sleep stages; drugs also affected
slow-wave sleep. Administering PD 0200390 30 min earlier
than standard dosing was shown through simulations to reduce
latency to persistent sleep by 40%.
Conclusion The proposed accelerated model-building strate-
gy resulted in a model well describing sleep patterns of
insomnia patients with and without treatments.

KEY WORDS Markov model . NONMEM .
pharmacodynamics . polysomnography. population analysis .
sleep . transition model . zolpidem

INTRODUCTION

Initial dose ranging studies conducted to evaluate new
drugs developed for the treatment of insomnia typically
include evaluation of a drug’s effect in the sleep laboratory
with polysomnography (PSG) conducted over an eight-hour
period. The PSG provides objective measures of sleep,
including sleep onset, maintenance of sleep, and sleep
architecture. Based on the standard definition of sleep
stages by Rechtschaffen and Kales (1), each sleep stage is
determined over a 30-second interval, i.e. one epoch. Based
on these sleep stages, quantitative endpoints describing
sleep efficacy are calculated for each night of dosing.

Results of the PSG recordings are summarized over the
eight-hour period but may also be summarized in shorter
intervals over night, e.g. hourly. For each of these intervals,
endpoints such as sleep time and time spent in each stage
may be calculated. This helps define the time course of the
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different sleep stages overnight as well as provide an
understanding of the time course of drug effect. A further
refining of the time interval would be to examine the sleep
stage for each epoch. A pharmacokinetic-pharmacodynamic
(PK-PD) model that examines transitions to and from each
stage based on the epochs would provide a granular
description of the time course of sleep in the population and
the effect of different drugs in terms of both their time course
of response and their different effect on sleep architecture.
Such an approach has previously been applied using Markov
models to describe the probability of transitioning from each
stage of sleep (2–4). Kemp et al. (2) used Markov models for
analyzing and simulating the individual sleep profiles of
healthy volunteers. One limitation of the model developed
by Kemp et al. was to assume that transition probability from
one stage to another is constant throughout the night, i.e. the
transition probability did not vary over time. In the work by
Karlsson et al. (3), the transition probability for all stages was
investigated using mixed-effects analysis, and the transition
probability was allowed to change during the night. In that
study, the sleep pattern in an insomnia population was
characterized for baseline sleep under the influence of
placebo treatment. Karlsson et al. were also able to
characterize the effects of a benzodiazepine, temazepam.
Bizzotto et al. (4) expanded the model proposed by Karlsson
et al. to include restrictions on the probability of transiting
between stages to ensure that no probability exceeds one and
applied the model to primary insomnia patients to charac-
terize the baseline sleep-including placebo effects.

We have applied the mixed-effects Markov model to
data from a proof-of-concept study of a new drug in
development for the treatment of insomnia. The test drug,
PD 0200390, is a calcium channel α2δ subunit-binding
compound (5). The drug is rapidly and almost completely
absorbed following oral administration with a mean Tmax

value of less than two hours. Following administration in
the morning, peak PD response, measured using a
sleepiness scale in healthy volunteers, is delayed relative to
peak plasma concentrations and observed typically 3–4 h
post-dose. A GABAa agonist, zolpidem, was also included
in the study as active control. Administration of zolpidem
results in a rapid onset of action. Its half-life is about 2.5 h,
which results in a rapid offset of action as well; thus, the
degree of somnolence observed following administration of
zolpidem to healthy volunteers peaks 1 h post-dose and
returns to baseline within 4–6 h post-dose (6).

A difficulty with development of Markov models, in
particular for categorical data with many categories, is the
extensive work that is needed for model building. In the
case of sleep data with five categories, the total number of
transitions is 20. Additionally, the frequent sampling of
sleep contributes to the complexity of the model building as
most software for mixed-effects modeling has an upper limit

for the number of observations allowed per individual. In
addition, the run-times of the models increase rapidly with an
increasing number of observations. Thus, efforts weremade to
develop a model-building strategy to accelerate this process.

The purpose of this PK-PD analysis was to characterize
the time course of sleep stages and the concentration-effect
relationship of PD 0200390 on different sleep stages
relative to placebo and zolpidem. This model was also
used to assess the effects of different dosing regimens using
simulations. This was done using an accelerated model-
building process for sleep data using Markov models.

MATERIAL AND METHODS

Study Subjects

Healthy subjects of any race and either gender between the
age of 18 and 63 years, with normal electrocardiogram and
with a three-month history of primary insomnia, were
eligible for the study based upon subjective average latency
to sleep ≥30 min and subjective average total sleep time
≤6.5 h by history. These subjects were scheduled for two
nights of screening PSG in the sleep lab.

Forty three subjects, who according to the screening
PSG met all entry criteria, including a normal and
stageable PSG, 4 h ≤mean total sleep time ≤7 h, mean
latency to persistent ≥20 min, with the latency to persistent
sleep ≥15 min on both nights, were randomly assigned to
the treatments. The definitions of latency to persistent sleep
and total sleep time are given in the following section (Sleep
Measurement). Demographics for the patients are given in
Table 1.

Sleep Measurement

Each study night (including the screening nights), the
subjects went to bed at their habitual bedtime and
underwent PSG evaluation for 8 h. The PSG recording
started at the time the subject went to bed. PSG evaluation
included standard measurements of central and occipital
electroencephalogram, submental electromyogram, electro-
oculogram, airflow, respiratory effort, anterior tibialis
electromyogram and electrocardiogram.

PSG data were collected digitally and transferred
directly to a central reader for scoring. The central
reader was blinded to treatment conditions. Sleep stages
were determined by the central reader according to
Rechtschaffen and Kales criteria (1) for each epoch of the
PSG as wakefulness, stage 1, stage 2, stage 3, stage 4, and
REM sleep. As observations of stage 3 and stage 4 were
few, these two were lumped into one stage called slow-
wave sleep.
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Eighteen efficacy endpoints, measuring sleep quality and
quantity, were calculated based on the scored sleep stages.
These measurements, including their definitions and abbre-
viations, are listed in Table 2.

Study Design

This was a randomized, double-blind, active- and placebo-
controlled, four-way crossover study, performed to assess
the safety and efficacy of PD 0200390. All patients received
all four treatments blocks: 25 mg and 75 mg of PD
0200390, 10 mg zolpidem and placebo. They were all
assigned to one of four treatments according to a Williams
design. In each treatment block, the study medication was
administered 30 min prior to the subject’s habitual bedtime
for two consecutive days. A one-week washout window
prior to the next treatment was established.

Blood samples were collected 15 to 30 min and 30 to
60 min after awakening. Samples were assayed for PD
0200930 concentrations only.

Dataset

The dataset was prepared with sleep stage as the dependent
variable. The collected sleep stages are shown in Fig. 1
divided on previous observation for different time intervals

during the night. Also included in the dataset were columns
giving the observation from the previous measurement of
sleep stage, the time elapsed since the last change of sleep stage
(referred to as stage time), the time elapsed since going to bed
divided by the total time spend asleep (referred to as relative
bedtime), the predicted concentrations of zolpidem, and the
individually predicted PK parameters of PD 0200390. Apart
from these columns, standard columns, such as subject
number and covariates, were included in the dataset.

AMarkov process is a stochastic process in which the future
states depend only on the present state. Thus, the probability
of transitioning to a sleep stage is conditioned on the present
sleep stage observation. In our study, sleep was divided into six
stages: initial sleeplessness (IS), wakefulness (0), REM (5), stage
1 (1), stage 2 (2), and slow-wave sleep (3). The stage of initial
sleeplessness was introduced to allow estimation of a separate
transition probability for the first time the patients fell asleep,
since this was different from falling asleep when sleep already
has occurred. All patients started in the initial sleeplessness
stage and the only occurring transition from this stage was to
stage 1. Furthermore, patients were not allowed return to
this stage once a transition occurred.

Since there were five stages plus initial sleeplessness, a total
of 21 transitions from one stage to another were theoretically
possible. However, not all transitions occur physiologically, and
some transitions were very infrequent. To reduce the number

Subject characteristics

Gender

Male : Female 18 : 25

Hormonal Status

Male : Pre-menopausal : Surgical sterile : post-menopausal 18 : 12 : 2 : 11

Race

Caucasian : Black : Hispanic : Other 29 : 8 : 4 : 2

Smoking habits

Non-smoker : former smoker : smoker 27 : 7 : 9

Age (years)

Mean (SD) 45.2 (9.36)

Min, Max 26, 63

Weight (kg)

Mean (SD) 77.2 (14.1)

Min, Max 45.5, 121

Height (cm)

Mean (SD) 171 (9.36)

Min, Max 141, 190.5

Alcohol consumption during a month (cL of spirits)

Mean (SD) 3.27 (1.00)

Min, Max 0, 14

Creatinine Clearance (mL/min)

Mean (SD) 94.3 (19.4)

Min, Max 59.6, 141

Table 1 Patient Demographics
from All Patients in the Analysis
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of transitions to model, three criteria were defined to identify
the transitions of interest: (i) an average transition probability of
at least 1%, (ii) a transition represented at least 10% of all
transitions from a stage, and (iii) a transition represented at least
10% of all transitions to a stage. A transition was modeled if at
least one of the criteria was fulfilled.

Data Analysis

Markov mixed-effects models, similar to the models used
by Karlsson et al. (3), were used to analyze the sleep data.
If Yij = (Yij1, Yij2… Yijn) is the vector of observations for
the ith subject at the jth occasion, then the probability that

Fig. 1 Distribution of transitions in the observed sleep data divided into hourly intervals.

Table 2 Endpoint Measurements for Sleep Efficacy with Abbreviations and Definitions

Efficacy Endpoint Abbreviation Definition

Latency to persistent sleep LPS Time from start of PSG recording to sleep lasting at least 5 min

Total sleep time TST Time from sleep onset to final awakening subtracting time of wakefulness

Sleep efficiency SE Proportion of sleep, defined as TST divided by the time in bed

In period 1 SE1 SE for sleep period 0–2 h

In period 2 SE2 SE for sleep period 2–4 h

In period 3 SE3 SE for sleep period 4–6 h

In period 4 SE4 SE for sleep period 6–8 h

Wake after sleep onset WASO Time of wakefulness after sleep onset

Number of awakenings NAW Number of arousals to wakefulness during the time in bed

Number of arousals NAR Number of arousals to stage 1 and wakefulness during the time in bed

Stage shift SHIFT Number of shifts from one stage to another during the time in bed

Sleep onset latency SOLAT Time from start of the PGS recording to stage 1 is observed

REM sleep latency RELAT Time from start of the PGS recording to REM sleep is observed

Total time in stage 1 T1 Total time spend in stage 1 during the night

Total time in stage 2 T2 Total time spend in stage 2 during the night

Total time in slow-wave sleep T3 Total time spend in stage 3 or stage 4 (slow-wave sleep) during the night

Total time in REM sleep TREM Total time spend in REM sleep during the night

Total time in non-REM TnonREM Total time spend in stage 1, stage2, stage 3 or stage 4 during the night
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Yijt is equal to the stage m (m=IS, 0, 1, 2, 3, 5) at time = t,
given that the preceding observation was k (k ≠ m) has the
following general structure:

logit P Yt ¼ mjYt�1 ¼ kð Þij
� �

¼ logit pijmjk
� �

¼ gmjk þ hi þ kj ð1Þ
where

logit pijmjk
� �� ln

pijmjk
1� pijmjk

� �
ð2Þ

hence,

P Yt ¼ mjYt�1 ¼ Kð Þij ¼
egmjkþhiþkj

1þ egmjkþhiþkj
ð3Þ

The logit transform is used to ensure the probability
to be between zero and one; gm|k defines the four sub-
models and was implemented as a function of relative
bedtime, stage time, drug and placebo effects, as defined
in Eq. 4. The random effects ηi and κj are normally
distributed with a mean of zero and variances ω2 and π2,
respectively, describing between-subject and between-
occasion variability. An occasion was defined as one visit,
and since all four treatments and screening were measured
at two consecutive nights, there were ten occasions for
each subject.

gmjk ¼ ln TPmjk
1�TPmjk

� �
þ Placeboþ DrugExposure

TPmjk ¼ f ðrelative bedtimeÞ � f ðstage timeÞ
ð4Þ

in which TPm|k describes the baseline sub-model, Placebo
the placebo sub-model and DrugExposure the drug sub-
models for PD 0200390 and zolpidem. TPm|k is the
transition probability to m given previous observation of
k as a function of relative bedtime and stage time.

For all sub-models, baseline sleep, placebo and
exposure-response, a set of predefined models with increas-
ing complexity, were chosen as part of the accelerated
model-building process (Fig. 2 and Table 3). Three models
were evaluated both for the relative bedtime effect,
f(relative bedtime), and the stage time effect, f(stage time),
a linear, a piece-wise linear (PWL) with fixed breakpoints
and PWL with the internal breakpoint being estimated.
The first and last breakpoint for the PWL models of relative
bedtime were fixed at the first and last time of observation
of that stage, respectively. Correspondingly, the first and
last breakpoint for the PWL models of stage time were fixed
at entry of the stage (stage time=0) and the longest stage
time observed, respectively. In the PWL model with all
breakpoints fixed, the positioning of the internal breakpoint
was based on having approximately equal amount of data
in the intervals between the breakpoints. For relative

bedtime, a constant model was tried as the first choice,
similar to the approach used by Kemp et al. (2) but using
mixed-effects modeling.

Two placebo models were evaluated: a step and an
exponential model with relative bedtime as driving force.
Several different PK-PD models were tried to explore the
exposure-response relationships.

For PD 0200390, dose, individual predicted plasma
concentrations and individual predicted effect site con-
centrations were used as driving force into a step, a
linear and an Emax model. Concentrations were pre-
dicted through Bayesian estimation using a previously
developed population PK model with measured concen-
trations and covariates (age, weight, and creatinine
clearance) as inputs (Fig. 3). A one-compartment model
defined in terms of oral clearance (CL/F), oral volume of
distribution (V/F), first-order rate of absorption (ka) and
lag time for absorption (tlag) was used to describe the
concentrations of PD 0200390 (7,8). Effect site concen-
trations were calculated assuming a value of 0.8 hour-1 for
keo, the rate constant describing the time until equilibra-
tion between systemic and effect site concentrations (9).
This value was obtained from a previous PK-PD analysis
in healthy volunteers using the Stanford Sleepiness Scale
as the PD measurement (7).

For the active control, dose- and population-predicted
concentrations were used as the driving force into a step, a
linear and an Emax model. Concentrations of zolpidem
were predicted from a population PK model developed
using data obtained in 39 healthy subjects receiving
zolpidem 10 mg alone as part of a drug-drug interaction
study. The PK model consisted of a one-compartment
model with lag time and covariate effect of weight on oral
volume of distribution (V/F) using a power model with
weight centered on a 70-kg individual. Mean parameters
for CL/F, V/F, ka, and Tlag were 12.8 L/hour, 62.7 L,
3.03 hour-1, 0.218 h, and the exponent of the power
function of 0.945. This was similar to previously published
values (10–13).

Introducing TPm|k into the model as the logit of the
expression was done to allow estimation of parameters in
the range of standard values of probabilities rather than
logit transformed values. To ensure that the values of
TPm|k did not exceed one, the upper limits of the parameters of
f(stage time) were set to the reciprocal of the upper limits
of the corresponding parameters of f(relative bedtime). If
the parameters of both functions were estimated to the
upper limits, TPm|k was one. Ensuring non-negative values
of TPm|k was done by setting the lower limit of the
parameters of f(relative bedtime) and f(stage time) to zero.
Keeping the estimates of f(relative bedtime) in the same
ranges as the probability ensures the estimates of f(stage time)
to be interpreted as multiplicative factors. Thus, if the stage
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time effect was estimated to 2, the transition probability was
doubled, and, consequently, if the stage time effect was
estimated to 0.5, the transition probability was reduced to
half.

The accelerated model-building approach also included
a strategy, illustrated in Fig. 2, which can be described by
the following steps: i) define baseline model using screening
sleep data; ii) add placebo data and explore the placebo
model; iii) develop the sub-models of PD 0200390 and
zolpidem in parallel, based on the data for each drug added
to the placebo and screening data; and iv) re-estimate all
parameters with the support of all data. In each step of
adding data, the parameters of the previously developed
model were fixed.

As no parameters were shared between the different
transitions, all transitions were modeled separately. This
was done to avoid any problems with the software’s limits
for maximum allowed number of observations per individ-

ual and to decrease the runtimes. In the last step of
finalizing the joint model, covariance between the transition
models’ empirical Bayes estimates of etas were examined to
verify that this assumption was in fact valid, given the
shrinkage in the empirical Bayes estimates were not higher
than 30% (14).

Model discrimination was based on simulation-based
goodness-of-fit plots, scripted and executed in S-PLUS
v.6 (Insightful Corp.) and R v.2.11.1 (15), changes in the
objective function values (OFV) provided by NONMEM,
and scientific plausibility. At each step when including
new parameters or changing the shape of the model,
goodness-of-fit plots depicting the observed and predicted
transition probability versus relative bedtime/stage time
were produced. Since subjects with high transition
probability will exit the stage quicker than those with
low, the plots will be downwards biased. However, they
served the purpose of giving an indication on the shape of

baseline model

+ placebo data

baseline/placebo/PD 0200390
model

+ zolpidem data + PD 0200390 data

all data

screening data

baseline/placebo
model

baseline/placebo/zolpidem
model

baseline/placebo/
/PD 0200390/zolpidem

model 

Baseline sleep Model
i) f(relative bedtime)
1. Step
2. Linear
3. Spline with fixed internal BP
4. Spline with estimated internal BP
ii) f(stage time)
1. Linear
2. Spline with fixed internal BP
3. Spline with estimated internal BP

Placebo Effect Model
1. Step
2. Exponential

PD 0200390 Effect Model
1. Step
2. Step(dose)
3. Linear(conc / ec-conc)
4. Emax model(conc / ec-conc)

Zolpidem Effect Model
1. Step
2. Linear(conc)
3. Emax model(conc)

Fig. 2 The model-building strategy included predefined models for each of the four sub-models: baseline, placebo, PD 0200390 and zolpidem, where
the baseline model included both effects of relative bedtime and stage time. This accelerated model-building procedure was performed for each transition.
BP breakpoint, conc—predicted concentrations, ec-conc—predicted effect compartment concentrations.

Table 3 Predefined Models for Relative Bedtime with Stage Time, Placebo and Exposure-Response Models

Baseline sleep Placebo PD 0200390/zolpidem

qcons tan t � 1 I0=1 � qstep I0=1 � qstep
qBTlinear � BTmin ðBTÞ�max ðBTÞ � qSTlinear � ST0�max ðSTÞ qICPT � e�BT I0=1 � qDose1 þ I0=1 � qDose2
qBT1 � BTmin ðBTÞ�BT þ qBT2 � BTBT�max ðBTÞ � qST1 � ST0�ST þ qST2 � STST�max ðSTÞ conc � q1
qBT1 � BTmin ðBTÞ�qBTbp þ qBT2 � BTqBTbp�max ðBTÞ � qST1 � ST0�qSTbp þ qST2 � STqSTbp�max ðSTÞ conc�q1

ðconcþq2Þ

θ—estimated parameter, BT—relative bedtime, ST—stage time, BT—mean relative bedtime, ST—mean stage time, I0/1—indicator variable being 1 if
drug/placebo is present and 0 otherwise, conc—concentration of drug, concentration may be exchanged for effect compartment concentration of drug
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the relationship. Differences in OFV were used to
discriminate between hierarchical models, and a decrease
in OFV of 3.84 (χ2-distributed) corresponds to a signifi-
cance level p<0.05, with 1 degree of freedom.

The likelihood of L was maximized using the Lap-
lacian method in NONMEM version V (Icon Dev.
Solutions) (16) with the likelihood option as given in
Eq. 5:

L ¼ PðYt ¼ mjYt�1 ¼ kÞij � Iijt þ ð1� PðYt�1 ¼ kÞijÞ
� ð1� IijtÞ ð5Þ

in which Iijt is an indicator variable taking the value one if
Yt is equal to m and zero if Yt is not equal to m.

Model Evaluation

A joint simulation model was built from all transition
models developed during the analysis, and 100 datasets
were simulated using the realized design and the
covariates as given in the observed dataset. The joint
model was built using Perl. In order to assess the validity
of the population model, a predictive check, related to
the method suggested by Gelman et al. (17) and used by
Girard et al. (18), was performed. The check involved
comparing observed and simulated efficacy endpoints as
defined in Table 2. For each efficacy endpoint, distribu-
tions of the median, maximum, and minimum values were
generated from the simulated datasets and compared to
the corresponding observed values. This was done for the
first night following screening, placebo, both doses of PD
0200390, and zolpidem.

To assess the difference between the observed and the
simulated, the relative deviation between the simulated and
observed efficacy endpoints was plotted. The relative
deviation was calculated according to Eq. 6:

relative deviation ¼ endpointsimulated � endpointobserved

endpointobserved
ð6Þ

Another method used to visualize the predictive perfor-
mance of the model was plotting the average time spent in
a particular stage for the observed and simulated in hourly
intervals of relative bedtime. To avoid memory allocation
problems with S-PLUS, these plots were made using 25
simulations instead of 100 simulations.

Clinical Trials Simulations

Three different study designs were simulated based on the
joint simulation model: 1) 50 mg of PD 0200390 given
30 min prior to habitual bedtime, 2) 25 mg and 75 mg of
PD 0200390 administered 60 min prior to habitual
bedtime, and 3) 25 mg and 75 mg of PD 0200390
administered 120 min prior to habitual bedtime. Each
simulated designed was assessed by calculating the efficacy
endpoints listen in Table 2.

Using the assumption of linear PK characteristics,
the concentrations following a 50 mg dose of PD
0200390 were calculated as twice the concentrations
following a 25 mg dose of PD 0200390. The dose-
dependent magnitude of the step models for drug
effects were calculated as a linear interpolation of the
magnitudes estimated for 25 mg and 75 mg. The
concentration time profile for the simulations of dosing
60 and 120 min before bedtime were assumed to have
the same concentration time profile as was observed
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Fig. 3 Population (top) and individual (bottom) predictions for the
pharmacokinetic model of PD 0200390 used in the PK-PD analysis versus
the actual observations of concentrations. Observations below limit of
quantifications were plotting at zero, while predictions from the model
were plotted at the prediction value.
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for dosing 30 min before bedtime, but with a shift in
time of 30 and 90 min, respectively. This was achieved
by shifting the concentrations 30 or 90 min earlier
relative to bedtime and extrapolating the concentra-
tions for the last 30 or 90 min using the individual
terminal half-lives.

RESULTS

Distribution of the transitions in the observed data
divided into hourly intervals is shown in Fig. 1. The
most frequent transitions were within a stage as seen by
the darkness of the diagonal squares. The transitioning
into REM increased with increasing hours of sleep. Also,
the amount of slow-wave sleep increased with increasing
hours of sleep.

The criteria defined for selection of important transitions
resulted in a reduction of modeled transitions from 21 to
16. The ignored transitions were to slow-wave sleep from
any stage but stage 2, to stage 2 from wakefulness, and to
REM sleep from slow-wave sleep. The chosen transitions
are shown in Fig. 4.

The baseline transition probabilities are shown relative
to bedtime in Fig. 5. A majority of the transitions were
described using PWL models with the internal break point
being estimated. Only the transition from slow-wave sleep
to wakefulness was described using a linear model. As the
transition probability in the beginning of the night for
several transitions was too low to be estimated, the
corresponding parameter was fixed to low values. All
models included between-occasion variability or between-
subject variability except the model for transitions from
stage 2 to REM sleep. All parameter estimates are given in
the Appendix. No correlations between the empirical Bayes
estimates of the IIVs for the different models were

identified, and since the shrinkage ranged from 4.2% to
26.6%, this approach was judged valid.

Figure 5 also shows the effect of placebo relative to
baseline, which was significant on four of the transitions.
Two of the effects were described using an exponential
placebo effect with bedtime as the driving force. Both
effects promoted sleep by increasing the transition proba-
bility from initial sleeplessness to stage 1 and by decreasing
the transition probability from stage 1 back to wakefulness.
The two other placebo effects were described as a time-
constant increase in transition probability, between stage 1
and REM sleep and vice versa. The result of these two
opposing effects was an increased number of transitions to
and from REM sleep.

All stage time effects on transition probability were
described using PWL models as seen in Fig. 6. For the
transition from initial sleeplessness, the bedtime is the
same as the stage time, and thus stage time was not
modeled for this transition. Most stage time effects were
either monotonically increasing or decreasing the transi-
tion probability. If the stage time effect was monotonically
increasing, this was interpreted as the longer a patient
stayed in a stage, the more likely it would be that the
patient transitions to another stage, and thus vice versa for
the monotonically decreasing stage time. However, there
were a few stage time effects that did not change
monotonically, e.g. from REM sleep to stage 1 and from
stage 2 to wakefulness.

Figure 7 illustrates the effect of both drugs on the
transition probability as a function of bedtime. Two drug
effects were described using a step model varying with dose
of PD 0200390: wakefulness to REM sleep and REM sleep
to stage 1. In all other cases where a drug effect was found,
the effect was described using a linear model with predicted
concentrations as the driving force for the exposure-
response models.

In general, sleep was promoted by both drugs as seen
in the decreased probability of transitioning to wakeful-
ness and increased probability of transitioning from
wakefulness. The effect of zolpidem was greater than
the effect of PD 0200390 for increasing the transition
probability from wakefulness to stage 1, resulting in a
much lower latency to persistent sleep for zolpidem-
treated patients. Four transitions were only affected by
PD 0200390: from stage 2 to stage 1, from REM to
stage 2, from stage 1 to REM, and REM to stage 1. The
net result of these drug effects was a lower probability of
being in stage 1 for patients on PD 0200390 treatment.
However, the total time spent in REM sleep was not
changed as the increased transition probability from
stage 1 to REM sleep accounted for the decreased
amount of stage 1 sleep. There were no effects of either
the drugs or placebo on four of the transitions: from
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initial 
sleeplessness

5

2

Fig. 4 Transitions chosen for
modeling are shown, indicated
with an arrow. 0—wakefulness, 5
—REM, 1—stage 1, 2—stage 2
and 3—deep sleep.
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stage 1 to stage 2, from stage 2 to deep sleep, from stage
2 to REM sleep, and from deep sleep to stage 2.

The simulations performed as part of the predictive check
showed a good agreement with the observed efficacy endpoints
(Fig. 8). Only 6 of the 90 observed efficacy endpoints were
found outside the 90% prediction interval of the simulated
data. These 6 parameters were evenly distributed among the
5 treatments and among the 18 different endpoints, being
both over- and underpredicted, thus showing no trends.

The average time spent in a particular stage is presented in
Fig. 9. This visual predicted check was performed on 25

simulations; hence, no prediction intervals were added to the
graph. Twenty-five simulations are sufficient to judge the
central tendency though. The early peak of stage 2 sleep for
zolpidem-treated patients was not entirely captured; other-
wise, the main trends seen in the observed data were
captured by the simulations. The following was observed:

& The characteristic rapid decrease in the beginning of
the night followed by the slower increase at the end of
the night for time spent in wakefulness was well
described with the model.
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& Stage 2 was present throughout the night but most
abundant in the middle of the night in the observed as
well as simulated data.

& Slow-wave sleep showed a rapid increase in the
beginning of the night and a constant decrease from
approximately two hours of sleep until the end of the
night, which was well captured by simulations using the
model.

& REM sleep increased constantly from the beginning of
the night, peaking at the end of the night in both
observed and simulated data.

As the model’s central tendency over time and perfor-
mance on efficacy endpoints was evaluated, these were
chosen for the assessment of simulation results. Three study
designs were simulated using the developed model: 50 mg

PD 0200390 given 30 min prior to bedtime and 25 mg and
75 mg PD 200390 given 60 and 120 min prior to bedtime.
Results of the 25 mg and 50 mg doses are given in Table 4.
The efficacy endpoints most affected by changing the study
design were all latency parameters and, consequently, sleep
efficiency in period one and total sleep time. Changing the
time of dosing to earlier had the largest impact.

DISCUSSION

Sleep is regulated by three processes: a homeostatic
process determining the duration and intensity of the
sleep, a circadian rhythm determining the timing of
sleep, and an ultradian regulation keeping the amount of
REM sleep versus non-REM sleep fairly constant within a
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night. None of these processes were explicitly modeled.
The effect of the circadian rhythm on sleep pattern in this
study was assumed to be negligible. As the study was
performed around the same time every day and the
patients were studied during a fairly short time period, i.e.
5 weeks, changes in sunrise/sunset were not contributing
to changes in sleep pattern. The homeostatic process was
implicitly modeled with the between-occasion variability,
which allowed a patient with poor sleep one night, e.g. few

hours of slow-wave sleep, to have better sleep the following
night. As the homeostatic process was included in unexplained
variability, the simulations would not necessarily include the
behavior of better sleep the night following a night of poor
sleep, but as simulations were assessed on a population level
and not on an individual level, this would not influence the
simulation results. Ultradian regulation was partly accounted
for in the model by the inclusion of stage time as a driving
force for baseline sleep. As the stage time of REM sleep
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Fig. 9 Average time in minutes spent in the different stages, wakefulness (first column), stage 1 (second column), stage 2 (third column), deep sleep (fourth
column) and REM sleep (last column) at different times after habitual bedtime in hours for different treatments; placebo (solid line), 25 mg of PD 0200390 (dotted
line), 75 mg PD 0200390 (dashed line) and 10 mg of zolpidem (dot-dashed line) in the observed (lower row) and in 25 of the simulated datasets (upper row).
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increased, the model predicted a decreased transition prob-
ability, and vice versa, all in line with keeping the total REM
sleep fairly constant. However, when sleep patterns change
as a result of placebo and/or drug effects, the ultradian
regulation may affect the sleep pattern as well. If a drug
increases the transitioning to REM sleep, the ultradian
regulation would as a consequence increase the transitioning
from REM sleep in order to keep the total time in REM sleep
fairly constant. Interpreting drug effects with this model was
thus difficult, as effects related to sleep regulation would be
attributed to drug effect. The drug responses found in the
model, not related to concentration of PD 0200390, were
transitions from REM sleep to stage 1 and from wakefulness to
REM sleep. These drug effects could be a secondary effect of
drug treatment related to ultradian regulation. An alternative
approach would be to explicitly model the ultradian regulation
also for drug effects by including a stage time effect.

In this study, the placebo effect on sleep could be
separated from the natural time-course of sleep in insomnia
patients, as data in this analysis were available both with
and without placebo treatment. However, baseline record-
ings were for all patients made on the two first nights at the
sleep laboratory, making separation between placebo effects
and first night effect (19) impossible. The first night effect
gives a changed EEG with worse sleep as the consequence
when the sleep environment is changed. The veering off of
the first night effect is likely to increase the transition
probability in favor of slow-wave sleep as will the placebo

effect. Thus, the four placebo effects found in this analysis
were a combination of true placebo effects and patients
being more accustomed to the sleep environment.

For PD 0200390, the PK model was developed using data
from primary insomnia patients, and the predictions were so-
called post hoc estimates, using measured concentrations and
covariates in the study population to support the predictions.
The assumptions associated with this approach are weaker
than for the approach taken for zolpidem, where the predicted
concentrations were population predictions using a PK model
developed on a healthy population, adjusting for measured
covariates in the study population. Changes in the PK of
zolpidem has been reported for geriatric patients (age>70) and
patients with impaired renal or hepatic function (10), but since
this study was performed in a population with generally young
(26–63 years) and healthy insomnia patients, the extrapolation
between the populations was reasonable. An alternative to
using population-predicted concentrations would be to use a
kinetic drug action model, i.e. KPD model. In this model, the
drug effect with a delay is driving the effect. The population-
predicted concentrations in this study were, however, in all
models for zolpidem and in a majority of the models for PD
0200390 found to be a superior predictor of drug effects,
compared to dose, and thus explained part of the variability in
effect. Any unexplained variability or potential bias from PK
was, however, carried over to the PD parameters.

Markov mixed-effects modeling used to analyze sleep has
been previously published. Both Karlsson et al. (3) and

Table 4 Efficacy Endpoints for 25 mg and 50 mg Dose of PD 0200390, Calculated for Observed and Simulated Data. Simulated Values are Means of
100 Simulations. Definitions and Abbreviations of the Efficacy Endpoints are Given in Table 1. p.t.bt—prior to bedtime

Efficacy endpoint (mean) Observed 25 mg,
30 min p.t.bt

Simulated 25 mg,
60 min p.t.bt

Simulated 25 mg,
120 min p.t.bt

Simulated 50 mg,
30 min p.t.bt

LPS (min) 40.3 23.4 22.4 36.7

TST (min) 407 421 423 422

SE (%) 85.2 88.3 88.5 88.2

WASO (min) 43.6 43.2 41.4 28.0

NAW 7.8 9.38 9.17 6.96

NAR 27.5 28.0 27.7 22.5

SHIFT 17.1 19.6 19.4 15.6

SOLAT (min) 30.5 16.2 16.6 30.9

RELAT (min) 93.8 110.3 112.8 101

T1 (min) 0.101 0.099 0.098 0.079

T2 (min) 0.547 0.548 0.552 0.555

T3 (min) 0.124 0.131 0.134 0.133

TREM (min) 0.230 0.223 0.217 0.229

TnonREM (min) 0.772 0.778 0.784 0.773

SE1 (%) 66.9 78.2 79.5 69.0

SE 2 (%) 92.3 93.5 93.8 95.7

SE 3 (%) 93.9 94.1 93.9 96.5

SE 4 (%) 90.5 89.9 89.7 94.4
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Bizzotto et al. (4) used more than three breakpoints at pre-
fixed intervals for their PWL models, either equidistant in
time or with equal amounts of data in the intervals. In the
current work, only three breakpoints in the PWL models
were used. Exploring fewer breakpoints reduced the number
of runs, in line with the accelerated model-building approach,
and computational efforts were instead focused on estimating
the position of the internal breakpoint. Additionally, in the
model by Karlsson et al., no more than three breakpoints
were supported in the final model, even though more were
investigated. Stage time was included in the modeling of
baseline sleep in both Karlsson et al. and the current analysis.
Using the stage time in predicting baseline sleep was
discussed in the paper by Bizzotto et al. but not included in
the analysis. Including this effect on the baseline sleep might
eradicate the need for more than three breakpoints.

Each transition model included a transformation to ensure
that the probability could not exceed one within a transition.
Additionally, with Markov models, the overall probability of
transitioning from and within a state is not allowed to exceed
one. The risk of estimating an overall transition probability in
the current study was low, as the probability of transitioning
within a stage was much higher than transitioning from a stage.
However, to check the validity in this assumption, the overall
transition probabilities from a stage at the highest stage time
effect within an individual were calculated, and none of these
sums exceeded one. Implementing the model using trans-
formations to ensure that the overall transition probability was
not estimated greater than one was not possible with ourmodel,
as the transitions were modeled separately. A transformation of
this kind has, however, been suggested by Bizzotto et al.

Performing a covariate analysis on these data would be
an obvious way to proceed with the analysis. Identifying
candidate covariates could be done by plotting the
empirical Bayes estimates of etas against all possible
covariates and see if there are any trends. Caution should,
however, always be taken, since shrinkage might disguise or
enhance a covariate relationships (14). The shrinkage was,
however, low in this analysis, making this approach a
quicker option than the more computer-intensive automat-
ed SCM (20). This approach is, however, an exhaustive
method to find covariate relationships. The easiest way to
perform a covariate analysis for these data would be to first
explore the relationships on each individual transition and
then explore any similarities between the models that might
reduce the covariate model. For this particular data, several
potentially important covariates were available, such as
smoking habits, weight, and alcohol habits.

The accelerated model-building procedure was designed to
provide stable final models in a time- and run-efficient manner.
This was accomplished by modeling the transitions as separate
models and using sets of pre-defined models for each sub-
model. This approach is similar to what is used in standard PK

modeling where models with increased complexity are inves-
tigated, starting with a one-compartment model, then a two-
compartment model, etc. The choice of pre-defined models
was based on previous publications of Markov models for sleep
(2–4), though further simplifications could have been made.
The constant model included as the simplest models could have
been omitted, as it is implausible that the probability of any
transition is the same throughout a night. None of the final
models did include the constant model, supporting this
reasoning. Adding data first after a model was finalized and
proceeding, keeping the parameters of previously finalized
models fixed, was also part of the reduced model-building
procedure. The observed drop in the objective function when
including a new parameter in the model represented an
overestimate of the drop expected had all parameters in the
model been estimated. Keeping this in mind, fixed parameter
estimates when going to the next step in the model-building
process could be used to accelerate the model building.

Only withmodel-based analysis of sleep data can new dosing
regimens be simulated and used for guidance in designing new
studies. Two types of simulations were performed in this work:
simulation of a new dose of PD 0200390 and simulation of a
new dosing schedule. The different dosing schedules were
selected to match the time needed to reach the maximum PD
effect after dosing with PD 0200390 better, thus potentially
providing better overall efficacy on sleep parameters. The
performed simulations suggested that giving PD 0200390
earlier would largely improve the effect on LPS, an improve-
ment that could not be achieved by only increasing the dose.
These types of conclusions can sometimes only be drawn based
on simulations, and they can act as a basis support for decisions
made in later stages of drug development. Hence, building
models for the test drug and the disease during drug
development is of great benefit.

Using a model-based approach to analyzing sleep could also
render additional benefits for follow-up compounds, com-
pounds of a different mechanism of action, and sleep model
validation for healthy volunteers. For a follow-up compound
with a similar mechanism of action but different PK and/or
PK-PD profile (e.g. new drug with different onset, or
controlled-release formulation), the model could be used as it
is to perform forecasts of the outcome, enabling an easy
comparison between competing compounds before performing
the studies of the follow-up compounds. For studies performed
in a similar population but with a drug of a different
mechanism of action, the baseline and placebo model could
be re-used to re-investigate only the drug effects. This would
greatly reduce the time needed for this type of analysis and
would be a clever way to industrialize the use of Markov-
models for sleep analysis in drug development. A model-based
approach could also be used for validating the commonly used
insomnia model for healthy volunteers, i.e. the phase-advanced
population. A similarmodel for the phase-advanced population
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could be compared with the insomnia population, and the
differences between these populations—the surrogate healthy
population and the patient population—could be readily
identified and quantified and by that potentially validated as
a good or poor substitution of the target population.

Conclusively, the proposed accelerated model-building
process resulted in a robust sleep model where the parameters
of baseline sleep, placebo, drug effects of PD 0200390, and
drug effects of zolpidem could be well characterized.
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APPENDIX

I. Final parameter estimates for baseline sub-model with the
estimated variabilities. Transition probabilities at each
breakpoint are given in percent with the positioning of the
breakpoint in minutes. One transition is described with a
linear model, and for this model neither an internal
breakpoint nor a transition probability for the internal
breakpoint is given, as none was estimated. The stage time
effect is given at each breakpoint with the positioning of the
breakpoints in minutes. Stage time effect for the first
breakpoint was by definition 1. First stage time breakpoint
was by definition 0. Variability was modeled as additive on
the logit scale. Variability was allowed to be different at the
different breakpoints if supported. IS—initial sleeplessness,
0—wakefulness, 1—stage 1, 2—stage 2, 3—slow—wave
sleep, 5—REM sleep

II. Final parameter estimates of the placebo, the PD
0200390 and zolpidem effect sub-models with the between-

subject variability estimated for the effects of PD 0200390.
Only one model included between-occasion variability

Transition Baseline sub-model Variability model

From
stage

To
stage

f(relative bedtime) f(stage time) Between Subject Variability Between Occasion Variability

Probability (%) Breakpoint (min) Stage time effect Breakpoint (min)

1st 2nd 3rd 1st 2nd 3rd 2nd 3rd 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

IS 1 0.01a 0.668 79.3 0a 5.23 300a NA NA NA NA – 0.956 15.3 12.6 – –

0 1 31.0 41.8 34.0 0a 304 480a 0.131 0.0001a 4.24 925a 0.138×0.134b 0.134 0.427 – – 0.379

5 0.01a 1.13 2.33 45a 74.9 480a 0.00615 0.0001a 1.22 295a – 2.39 0.978×2.39b – 0.501 –

1 0 21.6 8.79 12.7 0a 22.6 480a 0.745 0.108 0.500a 74a 0.202 – 0.128 – 0.143 –

2 19.4 22.8 14.0 0a 252a 480a 1.62 0.0001a 0.596 74a 0.121c 0.121c 0.121c 0.113 0.304 −0.113d

5 1.52 5.72 6.77 75a 159 480a 0.331 0.0001a 1.21 74a – – 0.283 3.98 0.643 –

2 0 2.80 3.37 4.7 0a 287 480a 0.417 1.02 11.0 91a 0.248 0.144 0.144b – – –

1 3.19 36.9 6.89 0a 454 480a 0.377 0.313 6.48 91a – 0.192 – 0.316 – –

3 0.01a 2.42 0.0480 0a 29.4 480a 2.52 2.70 32.5 91a 1.38c 1.38c 1.38c – 0.546 1.80

5 0.01a 1.42 2.14 0a 73.0 480a 0.264 0.100a 9.30 91a – – – – – –

3 0e 0.627 NA 1.67 0a NA 480a 0.854 5.85 0.500a 83a – 1.18 – – – –

1 0.01a 0.747 1.95 0a 160a 480a 2.33 4.05 31.1 83a 16.7 0.0357×16.7d – – – –

2 6.98 11.7 16.6 0a 120 480a 0.170 0.165 1.21 83a 1.09b 1.09 2.66×1.09b – – –

5 0 1.69 1.73 2.34 0a 337 480a 1.87 2.92 6.00a 65a 0.451 0.190 0.190b − – –

1 2.34 1.17 1.48 0a 290 480a 2.89 0.0001a 41.9 65a – 0.789 – – – 0.537

2 0.01a 0.808 0.212 0a 37.0 480a 0.939 4.68 9.54 65a 0.438c 0.438c 0.438c – – –

NA not applicable
a Fixed parameter
bNo variance was estimated for this breakpoint, as the random effect of this breakpoint is equal to the random effect of the internal breakpoint. A
fixed effect is estimated to give the width of the variability at this breakpoint.
c Same variability for all three breakpoints
dNo variance was estimated for this breakpoint, as the random effect of this breakpoint is equal to the random effect of the first breakpoint. A
fixed effect is estimated to give the width of this variability at this breakpoint.
e Linear model of relative bedtime
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estimated instead of between-subject variability. Two
placebo sub-models were exponential with the estimated
parameters half-life and intercept, and two were step
models. All sub-models describing the effect of PD 0200390
were linear with the parameter slope, but two that were

described used step models with the estimated parameters
constant low dose and constant high dose. All effects of
zolpidem were linear, with slope being the only estimated
parameter. IS—initial sleeplessness, 0—wakefulness, 1—stage
1, 2—stage 2, 3—slow-wave sleep, 5—REM sleep

Transition Placebo PD 0200390 Zolpidem

From stage To stage Half-life (h) Intercept Constant Slope (ml/μg) Step, low dose Step, high dose Variability Slope
IS 1 1.09 1a NA 1.01b NA NA – 5.22

0 1 0.704 NA NA 0.500c 4.45

5 NA 0.415 0.156 0.586 5.53

1 0 2.10 −0.605 NA −0.786 NA NA 0.409 −1.66

5 NA NA 0.326 0.291 NA NA 0.430 –

2 0 −1.11 NA NA – −3.02

1 −1.04 NA NA – –

3 0 −1.54 NA NA – −6.62

1 −1.20 NA NA – −6.13

5 0 −0.765 NA NA 0.281 −4.03

1 NA NA 0.263 NA 0 −0.334 – –

2 0.454 NA NA – –

NA not applicable
a Parameter not estimated
b Parameter included at a significance level of p≤0.10, instead of p≤0.05 as the other Parameters
c This variability estimate is between occasion variability

III. Example code for a transition.
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III. Example code for a transition.
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